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TMRCA FOR A MATCHING Y-STR CLUSTER BY FITTING A 
BINOMIAL DISTRIBUTION  
 
By T. Whit Athey 
 
Abstract 
 
There exist standard tools for calculating the time-to-the-most-recent-common-ancestor, or TMRCA, for the Y-
STR values for a pair of individuals, for example, there is the TIP tool at Family Tree DNA (FTDNA).  There are 
fairly large uncertainties in the resulting values.  The existence of projects with numerous participants forming 
a Y-STR cluster provides the opportunity to calculate the TMRCA to much better accuracy, provided there are 
suitable analysis tools.  One such approach is presented here for a group of Y-STR haplotypes.  The number of 
cases of 0, 1, 2, 3, . . . mutations or differences from the ancestral haplotype of the TMRCA forms a histogram 
that theoretically should approximate a binomial distribution.  This report shows how to apply this idea to a 
cluster of Y-STR results and obtain the TMRCA in generations. 
 
  
 
 
 
Introduction 
 
In a set of closely matching Y-STR haplotypes, there 
will be various numbers of differences of each 
individual’s haplotype (the set of Y-STR values) from 
the ancestral haplotype of the TMRCA.  The 
ancestral haplotype, without significantly affecting 
generality, can be assumed to be the modal values 
of the cluster being considered.  In this development 
it will be assumed that each haplotype has the same 
number of markers and that the Y-STR markers of 
each haplotype are one of the standard panels 
offered by FTDNA.  That is, each haplotype should 
contain one of the standard 12-, 25-, 37-, 67-, or 
111-marker sets, and each haplotype should have 
the same number of markers.  For the cluster of Y-

 
1 Ken Nordvedt has developed a number of utilities and 
descriptive files that are linked at the ISOGG web site.  See 
also the Reference Section and Footnote 2. 

STR markers, if the number of cases of 0, 1, 2, 3, . . . 
mutations from the ancestral haplotype is 
calculated and graphed as a histogram, the 
distribution should theoretically approximate a 
binomial distribution.  This report will show how the 
best (binomial) fit to the observed distribution can 
estimate the TMRCA. 
 
The present method would be most suitable for 
cases where the TMRCA lived within the last 1000 
years, so that back mutations would be minimized.  
For deeper ancestry, such as determining the 
TMRCA for haplogroups, methods such as those 
based upon Nordvedt’s Interclade Estimation 
method would be more appropriate.1,2 
 

  
2  Vance JD (2020) SAPP Toolset (based upon Nordvedt’s 
Interclade Estimation method).   http://www.jdvsite.com/ 
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Naturally, clusters with larger numbers of Y-STR 
haplotypes will yield a TMRCA with a smaller 
uncertainty.  In practice, at least ten haplotypes 
should be used, and ideally more than 20.  There will 
be a trade-off between selecting a larger number of 
markers for more “marker transmissions” and a 
lesser number of markers, which will usually mean 
more haplotypes to consider in the cluster.  Often in 
practice choosing the 37-marker panel may be 
optimal, but the process may be repeated for 25 
markers and 67 or 111 markers where the data are 
available.  This issue will be discussed again later in 
this report. 
 
Methods and Data 
 
For each of the panels of Y-STR markers from FTDNA, 
1-12, 1-25, 1-37, 1-67, and 1-111 markers. various 
approaches have been used to determine the 
average mutation rate   For the purposes of this 
report the average mutation rate for each of the five 
panels shown in Table 1 will be used3,4.   
 
Table 1  Average Mutation Rates: Five Y-STR Panels 

 
 

3  An example of the determination of average mutation rates 
for the first three panels, which are slightly different from 
those used here, may be found in Chandler J (2006) 
Estimating per locus mutation rates.  Journal of Genetic 
Genealogy, 2:27-33. 
 

If more accurate rates are available, they may be 
substituted in the program, which is easily 
implemented in an Excel spreadsheet (see 
Reference Section for an example of an 
implementation. 
 
The Binomial Distribution 
 
When events are expected to occur randomly, 
independently, and at a constant rate, the 
probability of the event occurring on the xth trial out 
of n trials, follows a binomial distribution.  That is, 
the probability of the number of events, n, occurring 
when the rate is p is given by the binomial 
distribution:5 

 

B(x, n, p) =  𝑛𝑛!𝑝𝑝𝑥𝑥(1−𝑝𝑝)(𝑛𝑛−𝑥𝑥)

𝑥𝑥!(𝑛𝑛−𝑥𝑥)!
         (1) 

 
Where x = 0, 1, 2, 3, . . . ,    (in our case, this will be 
the genetic distance from the ancestral haplotype) 
 
n = number of trials   (in our case, this will be the 
number of marker transmissions after k generations, 
which will be k times the number of markers).  n! = 
n x (n-1) x (n-2) x . . .x 1  (n factorial) 
 
p = probability of an occurrence (in our case, the 
average probability of a mutation in a marker) 
 
 A table of the distribution of the probability for the 
111-marker case (p = .00258) can be generated in 
Excel using the BINOM.DIST function.  The function’s 
syntax is: 

4  A discussion of mutation rates from different sources may 
be found in Athey TW (2007) (Editorial) Mutation rates—who 
has the right values?  Journal of Genetic Genealogy, 3(2):i-iii.  
The values used here represent an average from different 
sources. 
 
5  https://en.wikipedia.org/wiki/Binomial_distribution 

Panel of Markers Average Mutation Rate 
(mutations per marker 

per generation) 
1-12 .0025 
1-25 .0028 
1-37 .0042 
1-67 .0031 

1-111 .00258 
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BINOM.DIST(x,n,p,FALSE) 
 
The “FALSE” value is necessary to distinguish the 
present case from a cumulative distribution.  In 
some versions of Excel, the function may be written 
as “BINOMDIST” without the “dot.”  Table 2 was 
calculated using the Excel function:  
 
BINOM.DIST(x,n,0.00258,FALSE) 
 
n will be the product of 111 and the generation 
number G (that is, after each generation, 111 
markers will have been transmitted to the next 
generation in the line by each participant). 
 

In the following example we will consider 26 
haplotypes, each with 111 markers.  Each column of 
the BINOM.DIST distribution will represent the 
theoretical distribution of the fraction of the 26 
haplotypes that are a genetic distance of x from the 
ancestral haplotype.  The third column of Table 2 
has the corresponding observed distribution, and 
we will be seeking the BINOM.DIST column that best 
fits the observed distribution.  The interpretation of 
the column under Generation 1 is that after one 
generation, we would expect .759 of the haplotypes 
to have the unmutated ancestral values, .209 of the 
haplotypes to have one mutation from the ancestral 
values, .028 of the haplotypes to have two 
mutations from the ancestral values, etc. 

 
 
Table 2  Observed Distribution and Candidate Bionomial Distributions (for 111 markers) 
 

Distribution for Example Binomial Distribution 
Genetic 
Distance 
from the 
Ancestral 
Values 
(x = 0, 1, 
2, . . .) 

Observed 
number of 
individuals 
with x 
genetic 
distance 
from the 
ancestral 
values 

Actual 
Distri-
bution 
 
Divide 
By No. 
of 
haplo- 
types 
(26) 
 

Gen 1 
 
n=111  

Gen 2 
 
n=222 

Gen 3 
 
n=333 

Gen 4 
 
n=444 

Gen 5 
 
n=555 

Gen 6 
 
n=666 

Gen 7 
 
n=777 

Gen 8 
 
n=888 

0 5 0.1923 0.75910 0.57623 0.43742 0.33204 0.25205 0.19133 0.14524 0.11025 
1 10 0.3846 0.20948 0.31804 0.36214 0.36653 0.34779 0.31681 0.28057 0.24341 
2 9 0.3461 0.02864 0.08737 0.14945 0.20184 0.23951 0.26189 0.27065 0.26838 
3 2 0.0769 0.00259 0.01593 0.04100 0.07393 0.10976 0.14411 0.17383 0.19706 
4 0 0.0000 0.00017 0.00217 0.00841 0.02027 0.03766 0.05939 0.08362 0.10840 
5 0 0.0000 0.00001 0.00024 0.00138 0.00443 0.01032 0.01955 0.03214 0.04765 
6 0 0.0000 0.00000 0.00002 0.00019 0.00081 0.00235 0.00535 0.01028 0.01743 
7 0 0.0000 0.00000 0.00000 0.00002 0.00013 0.00046 0.00126 0.00282 0.00546 
8 0 0.0000 0.00000 0.00000 0.00000 0.00002 0.00008 0.00026 0.00067 0.00150 
9 0 0.0000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00005 0.00014 0.00036 
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10 0 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00003 0.00008 

In the second and third columns of Table 2 are shown the actual distribution of the genetic distances from the 
ancestral haplotype of an example cluster of 26 haplotypes with 111 markers.  Note that the columns labeled 
Gen 5 and Gen 6 appear closest to the observed values, as shown in Table 3.  However, we can calculate a better 
value for the TMRCA if we use all of the information available. 
 
Table 3  The Three Columns That Are Best Fits to the Observed Distribution 

 
 
We see that our observed distribution lies close to 
the theoretical (binomial) distributions for Gen 5 or 
6, or that our cluster TMRCA is approximately 5 or 6 
generations back from the present test takers.  Of 
course, we have assumed that everyone in the 
cluster is the same number of generations removed 
from the common ancestor.  When that is not the 
case, the final TMRCA will be an average of the 
number of generations back to the common 
ancestor. 
 
In terms of the present example, we can calculate 
the best fit to the theoretical distribution by using 

the method of least squares.  That is, we can 
automate the above “bracketing” by calculating the 
sum of  squares for the differences between ob-
served and binomial distributions for the most likely 
generation, along with the two bracketing 
generations—those columns on either side of the 
one with lowest sum of squared differences. This 
can be followed by determining a second-degree 
polynomial fit to the sum-of-squares values and 
finding the generation value G that represents the 
minimum of the fitted polynomial. 

 
Table 4  Sum-of-Squares of Differences Between Observed and Binomial Distributions 

 Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen 7 Gen 8 
Sum of 
Squares of 
Differences 

0.4582 0.2225 0.1006 0.0411 0.0189 0.0201 0.0362 0.0615 

 
Our observed distribution is very unlikely to be near 
the generation 1 binomial distribution, so naturally 

the sum-of-squares for Gen 1 is the largest (of those 
showing) in Table 4.  The sum-of-squares values 

Genetic 
Distance x 
from the 
Ancestral 
Values 

Number of 
Individuals with 
this Distance from 
Ancestral 
Haplotype (out of 
26) 

The resulting 
observed fraction 
of the cluster at 
this distance 
= #mut/26 

Column Bracketing 
Gen 5 on the left 
(Column from 
Table 2 for Gen 4) 

Column for Gen 5 
(possibly the best 
fit, though Gen 6 
is also a 
possibility) 

Column Bracketing 
Gen 5 to the right 
(Column from Table 2 
for Gen 6) 
 

0 5 0.1923 0.3320 0.2520 0.1913 
1 10 0.3846 0.3665 0.3478 0.3168 
2 9 0.3461 0.2018 0.2395 0.2618 
3 2 0.0769 0.0739 0.1098 0.1441 
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decrease for a few generations as we approach 
more likely possibilities, and finally start rising again 
as we move beyond the most likely generation.  As 
an example of the Table 4 calculation, consider the 
sum-of-squares for the column for Gen 5: 
 
Sum = (.1923-.2520)2 + (.3846-.3478)2 + 

(.3461-.2395)2 + (.0769-.1098)2 + 
(.0769-.0739)2 + (0-.0377)2 + (0-.0103)2 + . . . 

 
         = .00356 +.00135 + .01136 + .00108 + .00001 

+ .00142 + .00011 + . . . = 0.0189 
 
We can see that the best fit—the column that 
minimizes the sum-of-squares--is near Generation 5 
or 6.  If we let s1, s2, and s3 represent the sum-of-
squares values from the columns for Generations 4, 
5, and 6, and let d be the generation number of the 
middle of the three columns with the lowest sum-
of-squares value (column 5), then the generation  
number that minimizes the second-degree 
polynomial fit to those values is given by:6 
 
G = d-1+(1.5s1-2s2+0.5s3)/( s1-2s2+s3)               (2) 
 
Substituting the values from Table 4: 
 

G = 5 – 1 + [1.5(0.0411)-2(0.0189) 
+0.5(0.0201)]/[0.0411-
2(0.0189)+0.0201] = 

                      = 4 + .0338/.0233 
                      = 5.45 
 
Therefore, the best fit to the given data is TMRCA = 
5.45 generations, which represents an average 
value for the group of haplotypes.  For example, this 
average for the 26 haplotypes might result from 14 

 
6  The process for determining Equation 2 is as follows.  We fit 
a quadratic (second-degree) polynomial of the form G = ax2 + 
bx + c to the s1, s2, and s3 values for x = 4, x = 5, and x = 6, then 

of the 26 being 5 generations from the common 
ancestor and 12 being 6 generations. 
 
The above procedure may be set up in an Excel 
spreadsheet with inputs:  number of markers, 
number of haplotypes, the observed distribution of 
distances from the ancestral haplotype, and an 
array with the mutation rates for the five possible 
panels of Y-STR values.  A table like Table 2 can be 
set up, followed by a table of squared differences for 
Gen 1, Gen 2, etc, with a summation at the bottom 
of each column similar to Table 4 above.  Finally, the 
Generation number with the lowest sum-of-squares 
value can be used, along with values from the two 
adjacent columns, and the generation number may 
be calculated from Equation 2. 
 
When selecting the best-fit column, there may be 
cases like the one above where there is only a small 
difference in sum-of-squares for two columns, it is 
not really critical as to which one is chosen as the 
best one.   If we had chosen Gen 6 as the “central 
column” in the above calculation, we would get G = 
5.41, which is very close to our previous value. 
 
Therefore, the best fit to the given data is TMRCA = 
5.4 generations, which is an average value for the 
group of participants. 
 
A Special Case 
 
Consider Equation 1 for the case of x = 0.  That is, 
consider only the fraction of participants who are 
unchanged from the ancestral value after n marker 
transmissions.  In our example the observed fraction 
value would be 5/26 = .1923.  When we substitute 
x = 0 into Equation 1, we get: 

the minimum value for G is found by setting dG/dx = 0, and 
solving the resulting equation for x.  This results in the 
minimum value given by xmin = -b/2a. 
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B(0,n,p) = n!p0(1-p)(n-0)/[0!(n-0)!]  
 
But, n!/(n-0)! = 1, p0 = 1, and 0! = 1 (by definition), 
so we get a much simpler form: 
 
B(0,n,p) = (1-p)n 
  
If let g0 represent the observed value corresponding 
to the theoretical B(0,n,p), let G be the number of 
generations to the TMRCA, and let j be the number 
of markers, then substitute into this equation we get 
 
g0 = (1-p)n  = (1 – p)jG 
 
If we take the logarithm of both sides of this 
equation, we get 
 
log(g0) = jG log(1 – p) 
 
Or     G = log(g0)/[j log(1 - p)]               (3) 
 
For example, if we had used this simpler approach 
for the example above of the 26 haplotypes with j = 
111 markers, 5 of which still had exactly the 
ancestral Y-STR values, we would have: 
 
G =  log(5/26)/[111 log(1 - .00258)] 
 
    = - 0.7160/(-0.1245) 
 
    = 5.75 
 
This compares to the value of 5.45 that we found 
when using equation 2 on the entire observed 
distribution.  Note, however, that there is more 
uncertainty in the result when using this simpler 
formula.  If there were just one more mutation 
(leaving 4 of the 26 unmutated), or just one less 
mutation, our Equation 3 would have given a result 
of 6.5 or 5.1. 

 
 
Discussion 
 
In planning an analysis of a Y-STR cluster, it is likely 
that the best approach in choosing the number of 
markers and number of haplotypes to be analyzed 
will be a choice that maximizes the number of 
marker transmissions per generation in the whole 
cluster.  There will be a trade-off since the larger the 
choice of markers in the panel to be considered, the 
smaller will be the number of participants in the 
cluster who have that many markers.  So, one would 
usually seek to maximize the product jk where j is 
the number of markers and k is the number of 
participants with at least that number of markers. 
 
For example, in our case study above, we used 111 
markers, which gave us 26 participants with that 
number of markers, so the product gives us 111 x 26 
= 2886 marker transmissions per generation for the 
group.  If we considered 67 markers and assumed 
(for example) that we would have 32 participants 
available with results on that number of markers, 
then the product would be 2144.  If we assumed the 
participants with at least 37 markers (for example) 
to be 73, then the product would be 2701, which is 
almost as large as in the 111-marker case.    The best 
choice will, of course, depend on the particular 
cluster under consideration, but one should not 
always assume that choosing 111-marker 
haplotypes will be the best one, though it was in this 
example. 
 
Another approach to choosing the best number of 
markers for a cluster is simply to use the one that 
results in the broadest distribution of mutations. 
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