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T. Whit Athey, Editor

There is something about the idea of a “ticking” clock
in our genes that intrigues us.  In principle, if we have a
set of Y-STR haplotypes that all derive from a common
ancestor, we could calculate, from the observed muta-
tions and the mutation rates, the approximate number
of years or generations ago that the common ancestor
lived, the Time to the Most Recent Common Ancestor
(TMRCA).  But, there are complications to this simple-
sounding idea.

In this special section we present several new or alterna-
tive approaches to the grouping of haplotypes from
possibly related individuals, and for the calculation of
the TMRCA.  In the calculation of the TMRCA, both
new and traditional approaches are used, and it would
be fair to say that the new approaches are not generally
accepted at present--they are proposed approaches that
will need confirmation in other hands to gain accep-
tance.  However, because of the substantial interest in
this subject, we are presenting these articles in the hope
that one or more of them will ultimately be validated
and will come to be an accepted way of analyzing Y-STR
clusters.  If that doesn’t happen, then at least we may
have stimulated some more discussion on the subject.

If we have a set of haplotypes, our analysis will only be
valid if all of the haplotypes really descend from a
common ancestor and if they are representative of the
descendants of that ancestor.  Two of the articles in this
special section address the issue of how to form clusters
and confirm their integrity as a clade (Gwozdz, 2009a;
Howard, 2009a).  The approaches are quite different,
with that of Howard being more empirical and that of
Gwozdz involving a complex formalism.

The other main focus in the articles in this section is the
calculation of the TMRCA and the proper mutation
rates and correction factors to use in this process.

____________________________________________________________
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Mutation rates represent the rate at which the genetic
clock ticks.  There are two basic types of mutation rates
for STR markers: (1) father-son rates--those derived
from father-son transmissions (Gusmão, 2005), and (2)
effective rates--those derived from descendants of a
historical figure whose birth date is known, or from
descendants of a founding population where the found-
ing date is known, at least approximately (Zhivotovsky,
2004).  Father-son rates do not need to be derived only
from living father-son pairs, but can also be derived
from a genealogical tree (e.g., Kerchner, 2008), where
the common ancestor’s haplotype may be reconstructed
unambiguously and the genealogy of each living descen-
dant available for testing is known.  The important thing
to know about father-son rates is that they be deter-
mined from a genealogy only when the whole genealogy
is known so that a mutation that has occurred just once
in the genealogy, but perhaps appears in two or more
descendants, is only counted once in calculating the
mutation rate.  The genealogical structure is also impor-
tant for interpreting the results, as we will show below.

Effective mutation rates may be calculated when the
genealogy is unknown, but the time of birth of the
common ancestor is known.  If the same mutation is
showing in two or more subjects who are tested, then it
will be unclear whether both subjects inherited the mu-
tation from an intermediate ancestor, or whether the
mutation occurred independently in both lines, but the
whole issue is side-stepped in the calibration process.

It is also important to identify precisely what it is we are
looking for in a TMRCA and what we are actually
calculating.  I believe that if we are considering a haplo-
type series from a group of people who are all descended
from the same common ancestor, most people want to
know the average lineage length back to the common
ancestor.  That is, we want to be able to say, “The
common ancestor of this set of subjects is 12 generations
back, on average.”  We must add the part about “on
average” because the common ancestor will be slightly
different numbers of generations back for different
subjects.  The average lineage length is what we are
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seeking in a TMRCA, but is that what we really calcu-
late with traditional methods?

For example, when a genealogy is used for calculating
father-son mutation rates as in the Kerchner project, we
take the total number of independent mutations and
divide by the total number of father-son transmissions in
the genealogy, and we get the mutation rate as the
average number of mutations per transmission per hap-
lotype.  If desired, we can also determine the average
marker mutation rate by dividing by the number of
markers in the haplotype.

Once we have the mutation rate we can apply it to
clusters where the TMRCA is unknown--we turn the
operation around and start with the number of muta-
tions in the new series of haplotypes and divide by the
mutation rate and we get the number of transmissions.
The number of transmissions???  That’s not  what most
of us think of when we think of the TMRCA!  However,
we usually go further and divide the transmissions by the
number of haplotypes, and this gives us what most
people are calling the TMRCA in terms of the average
number of transmissions per subject.  However, this
quantity, the average number of transmissions per sub-
ject, is different from the average lineage length because
many of the transmissions will appear in more than one
lineage.  The average number of transmissions per sub-
ject will always be smaller than the average lineage
length, usually by 10-20%.

Consider a simple example of a grandfather with two
sons, each of whom have two sons, as shown in

:

In this simple example there have been six father-to-son
transmissions and we end up with four third-generation
descendants of the grandfather.  This results in an aver-
age of 1.5 transmissions per third-generation subject.

This value of 1.5 is somewhat smaller than the average
lineage length, which is 2.0 for the four grandsons.  Let’s
assume for a moment that we have a million markers
available to test in these four grandsons (this is just to
give us good statistics with this small number of genera-
tions and subjects), and assume that we know that the
father-son mutation rate for each marker was 1/1000
mutations per generation.  In the first generation each
son would get about 1000 mutations.  Each son’s sons
would get his 1000 mutations plus about 1000 more.
So each grandson would be different from the grandfa-
ther on about 2000 markers, though between grand-
sons, we would see some shared mutations.  If we
carefully noted the number of  mutations,
which is about 6000, and divided that number by the
father-son rates, we would get a result of about 1.5,
because it’s the average transmissions per subject that
the father-son rates give us.  We would not get what we
wanted--the average lineage length of 2.0.  However, if
we ignore the possibility of counting the same mutation
more than once, and simply counted the total mutations
in the grandsons, then divided by the rates, we would get
8000/(4 x 0.001 x 1000000) = 2, which is the answer we
wanted.  However, this seems fortuitous and perhaps
results from the simplicity and regularity of this particu-
lar genealogy.

Consider a real, rather than synthetic, example.  In my
own Athey surname project, at 37 markers, we have 19
participants who all descend from the same common
ancestor born in 1642.  Since we know the whole de-
scendancy tree for these 19 participants, we can see that
they are 8, 9, or 10 generations removed from the
common ancestor, and the average lineage length for all
participants is 8.8.  There have been 132 father-son
transmissions in the tree, for an average number of
transmissions per participant of 6.9.  The value of 8.8 is
what I believe most people think they are calculating
when they carry out a TMRCA calculation, but if father-
son rates are used, then it is not what they get--they get
instead, as already pointed out, 6,9, the average number
of transmissions per participant--a value that is 21%
lower.

The (father-son) mutation rate for this set of 19 subjects
on a 37-marker haplotype may be found by dividing the
number of mutations in the genealogy by the number of
haplotype transmissions, or 23/132 = 0.174.  One can
go further and calculate the average individual marker
mutation rate by dividing by 37, and we get 0.174/37 =
0.0047, which is close to the average in the Kerchner
project (0.0042) and to Chandler’s calibrated average
(0.0049), so that means that our set of Athey clocks has
been running very close to the average rate.  This is
simply a lucky result, however, because we don’t have a
large enough series of haplotypes, to assure that we
would be that close.
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Usually, when one has a cluster of closely matching
participants of the same surname, implying that they
share a common ancestor, one does not know the
genealogy.  If the genealogy were known, there would be
no point in calculating the TMRCA--it would be obvi-
ous from the genealogy.  However, if one just counts
mutations in living participants, there is the risk of
counting a mutation that has occurred only once (but
has been passed down to multiple participants) multiple
times, because the only practical approach is usually to
just compare each participant with the reconstructed
ancestral haplotype.  When we count the same mutation
multiple times, we will overestimate the TMRCA.

Most commonly, the father-son mutation rates are used
to calculate the TMRCA in a cluster with unknown
genealogy.  Therefore, it appears that we will have
partially offsetting errors occurring in the TMRCA
calculations.  When we have multiple counting of muta-
tions we will be overestimate the TMRCA as a result.
However, the result of the calculation if we use father-
son mutation rates is actually the average number of
transmissions per participant, which is a lower number
than the desired average lineage length.  These two
errors partially compensate and result in a value for
TMRCA that is fairly close to what we wanted, or
exactly the right answer in the case of a very regular
genealogy like that of Figure 1.

Using the Athey example again, the first error from
over-counting mutations results in 27 mutations instead
of the actual 23 in the genealogy.  This would result in
an apparent average number of mutations per lineage,
the so-called , of 27/19 = 1.42 which is 17%
larger than the actual value of rho = 23/19 = 1.21.  If we
then divide the apparent average number of mutations
per lineage (apparent rho) by the father-son mutation
rate of .174 mutations per 37-marker haplotype.  The
rate is derived from the Athey data (just to remove  this
as an additional variable), we get a result of 1.42/.174 =
8.16, whereas using actual rho, 1.21/.174 = 6.95
(average number of transmissions per participant).
However, if we call this value of 8.16 the TMRCA, then
we are actually much closer to the true average lineage
length of 8.8 than we would have been otherwise.  Our
TMRCA value was overestimated by a factor of 27/23 =
1.17 because of over-counting of mutations, while it was
underestimated by a factor of 0.79 from applying father-
son rates to a genealogical tree (the genealogical struc-
ture factor), with the final result being off by only by
about 8% because of the compensating errors.

I have not seen a discussion of this particular phenome-
non before, and possibly it is because the compensating
errors bring us close to the right answer that we have
overlooked it.  However, it would seem that there may
be cases where one should take these factors into ac-
count when attempting to determine the TMRCA for a
set of haplotypes.

Another method often used in population studies is the
average-square-distance (ASD) method.  This method is
needed if the time scale for the cluster is long enough
that more than one mutation on the same marker in the
same lineage becomes likely.  The second (and any
further) mutation on the same marker in the same
lineage may be up or down, and could erase the evidence
for any previous mutation.  However, the second
mutation could add to the first in the same direction,
and the ASD method provides an average correction for
these “random walk” effects.  In the ASD method, the
ancestral haplotype is reconstructed, often using the
modal haplotype for the cluster, and the ASD is calcu-
lated for each of the living participants with respect to
the ancestral haplotype.  The results for each participant
are averaged.

There is another ASD approach for the case when the
ancestral or founder haplotype cannot be reconstructed,
called the permutation method.  Both of these are
discussed in the article by Klyosov (2009a).  If is
sometimes claimed that the ASD methods avoid the
genealogical structure problem, but a simple example
will show that this is not true.  Consider the case where
a mutation in a particular marker occurs only once in
the history of the cluster.  If that mutation occurred in
the transmission from the common ancestor to one of
his two sons, then on the order of half of the present day
descendants of that son would show his value on that
marker.  However, if that same mutation only occurred
very late in the history of the cluster, it might show up
in only one participant.  The contribution to the ASD
from half the participants having that mutation will be
different from the case of only one participant having
that mutation.  It is true that the ASD for one participant
with respect to the ancestral haplotype should represent
an unbiased estimate of the number of generations
between that participant and the ancestor, but when
several participants have the same inherited mutation
that has actually occurred only once, the average of the
ASD for that group of participants will no longer be
unbiased.  The ASD approach assumes that mutations
on a particular marker in one subject will be
independent of the same mutation in a different partici-
pant.  The ASD method is likely to be used only in
applications where mutations have occurred multiple
times on each marker, so in practice it will be difficult or
impossible to determine if some mutations are not
independent.  One can only assume that all are indepen-
dent, but this will not be true in general, and the
difference that this effect makes, appears to be exactly
the same as the mutation-over-counting effect discussed
earlier.

The ASD method commonly uses father-son mutation
rates, so the same genealogical structure factor will
apply to this method as well.  One can easily see that this
is true because the ASD approach becomes the simpler
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linear approach in the limit that no mutation is more
than one unit from the ancestral value--the two ap-
proaches must yield the same result in that limit.

Is there any way around these difficulties?  Following are
some approaches to take these effects into account.

Method 0 – We could ignore the bothersome details.
This seems to be the most popular approach.

Method 1a -- In cases where we could estimate the true
number of mutations that has occurred in the genealog-
ical tree, or when it was clear from the pattern of
mutations that all mutations had occurred independent-
ly (e.g., when no two participants showed the same
mutation), then we could use only the independent
mutations in the calculation.  In this method we would
go ahead and use the father-son mutation rates, but we
would apply a correction factor to our TMRCA to
correct for the genealogical structure.  We can call this
factor a  or

 This genealogical structure factor is a
property of the descendancy tree alone--it is equal to the
ratio of the number of transmissions in the genealogy to
the sum of all the individual lineage lengths.  This factor
would probably range from about 0.75 to 0.85 for
typical surname clusters or genealogical trees.  We
would need to calculate this factor for a large number of
trees and average them to get the best factor to apply to
a cluster with an unknown genealogy.  For example, the
correction factor for the Athey example would be 0.79.
This is the only correction we would need to apply since
we are assuming no over-counting of mutations.

Method 1b -- In this case we would typically have a large
cluster with several cases of the same mutation showing
in multiple participants.  We would then need to correct
for both the genealogical structure and the over-count-
ing of mutations.  These factors work in opposite direc-
tions (compensating errors) as discussed earlier  For the
Athey example, the two factors combined would be

 (132/167)(27/24) = 0.927

We could then use the combined correction factor on
new clusters.  Note that while the genealogical structure
factor will probably vary only within a narrow range,
there is potentially a larger range for the correction for
over-counting of mutations, and there will often be no
good way of estimating the degree of over-counting.
The best situation would be a set of haplotypes where it
appears that no over-counting can occur (e.g., the same
mutation does not appear in more than one participant),
taking us back to Method 1a.

Method 2 -- In this method we would essentially “hide”
the genealogical structure factor (and any over-counting
of mutations) in the mutation rates, producing

“effective” mutation rates.  We could either (a)  take the
father-son rates and correct with an average genealogi-
cal structure factor and a factor to correct for average
over-counting, or (b) we could calculate our effective
mutation rates directly from a group of haplotypes with
a known time to the common ancestor.  Again, we
would need to calculate our rates from many clusters to
get a good average.  Note that it appears that the
problems have gone away in this approach, but the
effects are still there, only incorporated into the muta-
tion rates.  One will simply be accepting whatever gene-
alogical structure and mutation over-counting exists in
the calibration datasets as being the factors that will be
used in applying the effective rates to unknown clusters.
A further discussion of this latter approach is discussed
further below.

Method 3 -- Is there any way to get around the problem
of unknown genealogical structure?  Actually, there is a
way.  At least there is a way to calculate the
genealogical structure or more accurately, the structure
requiring the smallest number of mutations to produce
the observed set of haplotypes.  We can simply use the
Network program to calculate the structure.  This meth-
od finesses the over-counting issue at the same time. A
slight additional complication is that the actual structure
might have had slightly more mutations than the mini-
mum, but this minimum will likely be closer to the right
number than just counting mutations in the series of
haplotypes.  Another complication is that there are often
a large number of different trees that have close to the
minimum number of mutations, and these can have
quite different structures.  A bonus of using the Network
program is that the resulting value of the rho factor is
provided automatically.  The rho factor can be directly
converted to generations from the father-son mutation
rates with no adjustments.

With so many advantages, why doesn’t everyone just use
Network?  This approach is actually becoming more
widely used as more people recognize its usefulness.
However, if the method is applied over a time scale
where the generation time may not be constant at pres-
ent values, or if various forms of population dynamics
have been in play, then the rho/network approach can
give results that have substantial errors.  A recent article
by Murray P. Cox discusses the limitations of the meth-
od (Cox, 2008).  Cox creates synthetic descendancy
trees using a variety of demographic models and then
uses Network to calculate the expected value and vari-
ance for the rho statistic.  Cox shows that the 95%
confidence intervals for rho are usually rather large.  In
Cox’s lead example, he creates a tree with a 9300-year
age, using a commonly accepted mutation rate.  He then
uses Network to calculate the 95% confidence interval
on rho, which when converted to years yields an age
between 3250 and 43,500 years.  While this confidence
interval definitely contains the actual value of 9300
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years used in the simulation, and his sample size was
small, the exercise doesn’t inspire a lot of confidence in
the method, at least as far as this example is concerned.
Cox uses a number of demographic models and sample
sizes in his simulations, and many of the models indicate
that the result derived from the rho statistic are not
within the predicted 95% confidence intervals.  Part of
the problem is that with repeated simulations, all of the
different ways a tree could grow from a common ances-
tor become possible, each of which may produce a
different effect on the result.  When we are faced with
just one actual tree to analyze, we generally do not know
the history of the population, so we need to accept the
very wide confidence intervals.  These simulations were
of mutations in mitochondrial DNA, but the same prin-
ciples would seem to apply to Y chromosome dating
studies.  Cox did not even investigate the uncertainties
in mutation rates, which would add to the uncertainties
in the TMRCA.  When the network/rho approach is
applied to the more shallow time depth where extreme
population dynamics would be unlikely to have oc-
curred, the results would hopefully be somewhat better,
but still the method should be used with caution.

Note that if we are comparing just two haplotypes, there
are none of the complications of a branching genealogy,
and none of the effects discussed above will apply, other
than the issue of generation time.  The lineage lengths
and the transmissions are the same for a pair of descen-
dants of the same common ancestor.  However, if we do
a pairwise comparison of every pair of haplotypes in a
haplotype set and try to average them to get a better
estimate of the TMRCA, then we again have the compli-
cations of the structure in the genealogy--the average of
the TMRCA for each pair will not give us the TMRCA
for the whole set--we will get an underestimate of the
TMRCA by the genealogical structure factor.  Dividing
by this factor will increase the average pairwise value, an
increase of 10-20%, to get the TMRCA for the group.
One could also take a similar approach for the median
of the pairwise set in cases where there are likely to be
some outliers in the set.  One could also use a set of
known trees to examine the distribution of pairwise
TMRCA values and find the point (percentile) on the
distribution where it crosses the actual value.  This
percentile will probably be around 65 to 75 in general,
and could be averaged over several known clusters to
find a good percentile to apply to unknown clusters.

In regard to the Method #2b for correcting for genealog-
ical structure, the complications can be skirted and we
can calculate an effective mutation rate in mutations per
haplotype per generation  (or year) that subsume the
different effects discussed above.  Such approaches de-
pend for their calibration on the determination of the
effective mutation rates from a known time to an ances-
tor and corresponding number of generations (using
some assumption for years per generation) and a set of

haplotypes from  a set of known descendants of that
ancestor.  Generally, one would not know the genealo-
gy, and it wouldn’t be needed anyway.  One would
reconstruct the ancestral haplotype from the set, and
simply add up all the mutational differences from that
ancestral haplotype, without regard to the possibility of
multiple counting of mutations (that factor would be
included in the effective rate also).  If we then divide the
total mutations by the number of haplotypes, we get the
average number of mutations per haplotype.  If we take
my Athey example again, we would find 27/19 = 1.42
mutations per haplotype.  The common ancestor for the
Athey group was born on average approximately 305
years before the set of 19 participants, so 305 years
would correspond to 1.42 mutations per haplotype.
That is, we would have one mutation for every 215
years.  We could convert this to a rate and obtain 1/215
= .00466 mutations per 37-marker haplotype per year
per participant.  Alternatively, if we didn’t know that the
Athey common ancestor was 8.8 generations back on
average, we could estimate the number of generations
using, for example, 33.3 years per generation.  We
would estimate 305/33.3 = 9.1 generations, which is not
much different from the actual value of 8.8.  Then we
could calculate the effective mutation rate in terms of
generations instead of time.

The mutation rate just obtained for the Athey cluster is
only for one small cluster, so we shouldn’t expect that it
would necessarily be the best rate to use in general.
Ideally, we would repeat the calculation on a large
number of clusters and average the results.  However,
for purposes of illustration of how this would be applied
to a cluster with unknown genealogy, let’s apply it back
to the known Athey cluster from which it was derived.
In this group of 19 participants we observe 27 muta-
tions, so the TMRCA would be 27/(.00466 x 19) = 305
years, which, of course, matches the known time that we
started with.

This effective-rate procedure leads to a rather simple
approach with all the complications comfortably out of
sight.  However, if we apply the approach to a new set
of haplotypes, any deviation from the calibration-set
averages in the new set for either the years per genera-
tion value or the genealogical structure factor, will affect
the accuracy of the result.  These factors have not gone
away just because we can’t see them.  The advantage of
this of this approach may also be its principal defect--
when the complications are comfortably out of sight we
may tend to put too much credence in the results.

This approach has the advantage that it would eliminate
the systematic errors discussed above.  All the competing
effects would still be there, but they would be averaged
out over the large number of datasets that should be
used to calculate the effective rate, leaving only the
random errors to contend with.  One would also not
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need to worry about the number of years per generation
either, but in effect, the average generation time present
in the all the calibration datasets is silently chosen by
default.  If we then attempt to apply an effective muta-
tion rate to a cluster that goes back beyond the present
era of 33-35 years per generation (from which era most
of the calibration datasets come), the TMRCA result
may be in error.

The whole idea of effective mutation rates is frequently
disparaged in the on-line discussion groups on genetic
genealogy.  One reads of “fudge factors” being used to
modify mutation rates, as though there is any way
around such adjustments.  In clusters that are only a few
centuries old, the correction factor for the genealogical
structure, accounting for the fact that the genealogy will
have some intermediate ancestors for some pairs of
subjects, will typically be between 0.75 and 0.9.  That is,
any TMRCA might need to be adjusted upward by a
factor of 1.1-1.3.  For populations going back much
further in time, there will be the effects of population
dynamics also--the extinction of many lines and marked
expansion of others, plus a possible reduction in the
generation time.  All of these effects will require correc-
tion factors that collectively may reach the factor of two
used by Zhivotovsky (2004) in his often-cited article.
Note:  The factor of two is derived from the mutation
rate Zhivotovsky determined, .00069 per marker per 25
years, or equivalently .00092 per 33.3 years (to put it on
approximately the same basis as the father-son studies),
and the father-son rate for the same markers of about
.00184 per marker per generation (of about 33.3 years),
and these two values, .00092 and .00184 differ by a
factor of two.

An example of the effective-rate approach is included in
this section in the article by Klyosov (2009a).  Since his
effective rates were determined from a large cluster
ranging back about 800 years, they would presumably
be most applicable to other datasets with a similar age.
However, his article sometimes applies the method to
older clusters (correcting only for additional back muta-
tions and asymmetry of mutation distributions)
(Klyosov, 2009b), and, indeed, he makes the point that
he believes no additional correction is needed.  Klyosov’s
approach is interesting in that he uses a very simple
simple “linear” approach to TMRCA, but then he pro-
vides correction factors for back mutations and asym-
metry where needed.

Howard (2009a) uses a correlation-based approach to
compare pairs of haplotypes, which results in a pairwise
measure that is proportional to time.  He calibrates his
time scale using several surname clusters with known
genealogies, and his rates are also directly in terms of

years.  The generation time is subsumed in his calibra-
tion, but he must still use a genealogical structure factor
to correct the average (or median) pairwise time for the
cluster to arrive at overall TMRCA for the cluster.

The two articles by Gwozdz (2009a, 2009b) focus pri-
marily on evaluating the integrity of clusters, but in
addition he reviews the ASD and other methods for
calculating the TMRCA.  His cluster analysis tools will
provide a way to assess when a cluster has a good chance
of representing a clade.  In his second article he applies
his methods to several apparent clusters that have been
found in datasets from Poland.

Again, this special section is intended to stimulate dis-
cussion and comment.  We will welcome any formal
responses in the form of further articles on the subject,
or just a letter to the editor.
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