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Haplogroup Prediction from Y-STR Values Using a Bayesian-Allele-
Frequency Approach 
 
T. Whit  Athey 
 
 
A new Bayesian allele-frequency approach to predicting the Y-chromosome haplogroup from a set of Y-STR marker 
values is presented and compared to other approaches.  The method has been implemented in an Excel-based 
program, where an arbitrary number of STR markers may be input and a “goodness of fit” score for 15 haplogroups 
(C, E3a, E3b, G, H, I1a, I1b1, I1b2, J, L, N, O, Q, R1a, and R1b) and the Bayesian probability for each haplogroup  
is returned.  This method has been applied to 100 R1b haplotypes, 50 I1a haplotypes (all having 37 STR markers 
available), and 54 of the YCC sample set (having 20 STR markers available). 
  
Version:  20 October 2006 
 
 
Introduction 
 
There is considerable interest in determining the Y-
chromosome haplogroup, a group or family of Y-
chromosomes related by descent and defined by the 
pattern of single nucleotide polymorphisms (SNPs), 
from the Y-STR haplotype.  Two methods have been 
described previously, an allele-frequency-goodness-of-fit 
approach and a genetic-distance approach (Athey 2005).  
 
While the allele-frequency-goodness-of-fit has been 
fairly successful in indicating the haplogroup, it does not 
actually provide a prediction or probability that a 
haplotype is in a particular haplogroup.  The present 
article describes a Bayesian approach based upon allele 
frequencies.  Such an approach does result in the 
probability that a Y-STR haplotype is in a haplogroup. 
 
Methods 
 
Allele Frequencies 
 
The allele frequencies required for the present approach 
were calculated from collections of haplotypes extracted 
from published articles and public databases as 
described by Athey (2005).  Haplogroup prevalence 
information was also obtained from these sources. 
 
Bayes Theorem Generalized 
 
Suppose that a certain outcome, S, which normally 
occurs in the general population with probability P(S), is 
correlated with the result of a particular test B.  Bayes’ 
theorem tells us that: 
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Pr(S|B) =     __ Pr(B | S)Pr(S)____________________      1           
                   Pr(B | S)p(S) + Pr(B | NOT S)p(NOT S) 
 
In the above expression, Pr(S | B) is to be read as 
“probability of outcome S, given that we have obtained 
test result B.”  Similarly, Pr(B | S) is read as “probability 
of test result B, given that we know that the state is S.” 
 
We now must generalize Bayes’ Theorem for multiple 
possible outcomes, multiple possible test results, and 
more than one test.  The multiple outcomes will 
correspond to multiple possible haplogroups, the 
multiple test results will correspond to the different 
possible values of a Y-STR test on a single marker, and 
the multiple tests will correspond to the many different 
Y-STR marker tests that are available. 
 
The Wikipedia article on Bayes’ Theorem gives the 
generalization to the case where a set {Si} forms a 
partition of the event or outcome space (that is, there 
are more than two possible outcomes or states): 
 

Pr(B | Si)Pr(Si) 
 Pr(Si | B) =   __________________                  (2) 
                                      ∑ Pr(B | Sj)Pr(Sj) 
                                       j 
 
for any Si in the partition (for any of the possible states, 
Si).  
 
Note that the test B may have more than two possible 
results, Bj, and there will be an expression like the above 
for each of the possible results Bj.  

 

If there are two tests, T1 and T2, that may have 
predictive value for the state Si, we can consider that the 
probability of state Si, given test results T1 and T2, or 
Pr(Si | T1 AND T2), can be written: 
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Pr(Si | T1 AND T2) = 
 

     Pr(T1 AND T2| Si) Pr(Si) 
    ___________________________________________  (3)     

Pr(T1 AND T2| Si) Pr(Si)+Pr(T1 AND T2|NOT Si)Pr(NOT Si) 
 
If we were considering the entire population, instead of 
a sample of the population, the numerator would 
represent the total number of haplotypes in the Si 
haplogroup that match the test haplotype, and the 
denominator would represent the total number of 
haplotypes of any haplogroup that match the test 
haplotype. 
 
If the tests are independent, the right side of the 
equation may be simplified.  Tests of different Y-STR 
markers would generally appear to satisfy the 
independence condition, but there are important 
exceptions discussed below.  The right side of the 
equation becomes for independent tests: 
 

Pr(T1 | Si) x Pr(T2 | Si)Pr(Si)  
______________________________________________          

Pr(T1|Si)Pr(T2|Si)Pr(Si)+Pr(T1|NOT Si)Pr(T2|NOT Si)Pr(NOT Si) 
 
Or, even more generally, for any number of independent 
tests and any number of outcome states, our generalized 
version of Bayes’ Theorem becomes: 
 
Pr(Si | T1 AND T2 AND T3 AND . . .  AND Tn) =  
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Let the Tk represent tests of the kth Y-STR marker, each 
of which will return an integer result (out of several 
possible integer results).  Then we wish to find the 
probability that the haplotype (complete set of Y-STR 
values) is from Haplogroup Si.  Following the above, we 
can identify the quantities in the last expression above 
as follows: 
 
 Tk represents the test result for the kth Y-STR 
marker (for example, T1 might represent DYS393 = 13, 
and T2 might represent DYS390 = 23). 
 
 Pr(Si | T1 AND T2 AND T3 AND . . .  AND Tn)  
is the probability that the unknown haplotype is in 
Haplogroup Si, given that we know the test resultsT1, T2, 
T3, etc. 
 
 Pr(T1 | Si ) is the probability of the result T1 
occurring (e.g., DYS393 = 13) in Haplogroup Si.  This 
will be equal to the allele frequency (in that haplogroup) 
for that allele value. 

 
 Pr(Si) is the probability (prior to any test 
results) of the person being from a particular 
haplogroup.  If we don’t have any test results, then our 
best estimate of the probability of a particular 
haplogroup is just its frequency in the general 
population from which the person comes.  Note that 
this may be quite different in different parts of the world. 
 
Illustrative Examples 
 
The Bayesian approach outlined above will now be 
applied in detail to show how it works.  We will 
consider an artificial case where we have just two Y-
STR marker values and we will calculate the probability 
that the “haplotype” is in one of four haplogroups, G, J, 
I1a, or R1b. 
 
Tables 1, 2, and 3 contain the data that we need to 
collect before Equation 4 can be applied.  Basically, we 
need to know the frequency in the population of the 
four haplogroups and the allele frequencies for the two 
markers for each of the haplogroups.  We will assume 
that the person being tested and whose haplogroup will 
be predicted, is a person from northwest Europe or the 
United States, and the frequencies of each of these 
haplogroups will be chosen to be approximately those 
actually observed, except that the four frequencies have 
been scaled so that they add to 1.00.  That is, we will 
assume that the only possibilities are the four named 
haplogroups and that the population only contains 
those four haplogroups.  Table 1 shows these assumed 
values, which would be approximately the actual 
frequencies in a northwest European population (if 
those were the only haplogroups). 
 
 
 
Table 1  Assumed Population Frequencies 
 Haplo-

group G 
Haplo-
group J 

Haplo-
group I1a 

Haplo-
group R1b 

Pop. 
Freq 

0.02 0.04 0.15 0.79 

 
 
 
Table 2  Allele Frequencies for DYS393 
 
Repeat 
Values 

Haplo-
group G 

Haplo-
group J 

Haplo-
group 
I1a 

Haplo-
group 
R1b 

11 0.003 0.007 0.001 0.000 
12 0.013 0.884 0.022 0.021 
13 0.204 0.092 0.876 0.950 
14 0.680 0.015 0.088 0.028 
15 0.095 0.002 0.012 0.001 
16 0.005 0.000 0.001 0.000 
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Table 3  Allele Frequencies for DYS390 
 
Repeat 
Values 

Haplo-
group G 

Haplo-
group J 

Haplo-
group 
I1a 

Haplo-
group 
R1b 

20 0.010 0.001 0.001 0.000 
21 0.116 0.008 0.009 0.001 
22 0.603 0.126 0.610 0.010 
23 0.254 0.563 0.345 0.279 
24 0.013 0.231 0.033 0.561 
25 0.004 0.062 0.002 0.142 
26 0.000 0.009 0.000 0.007 
 
 
 
Let’s first avoid the use of the formulas and calculate 
from basic principles the probability of each haplogroup, 
assuming that we only know the value on DYS393.  
This is a very artificial situation, but it illustrates some 
important points.  Suppose that our testee has a value of 
14 on DYS393.  We may be tempted at first glance to 
say that Haplogroup G is most likely.  After all, 14 is 
the modal value in G for DYS393.  However, let’s see 
how this plays out. 
 
Assume that we pick 1000 people at random from a 
population that has only the four haplogroups 
represented, each of which has the frequencies shown in 
Table 1.  On average, such a sample of 1000 people 
would have 20 persons in G, 40 in J, 150 in I1a, and 
790 in R1b. 
 
Of the 20 people in G, on average (using Table 2), 
about 14 of them would have a value of 14.  Of the 40 
people in J, about 1 would have a value of 14.  Of the 
150 people in I1a, about 13 of them would have a value 
of 14.  Finally, of the 790 people in R1b, about 22 
would have a value of 14. 
 
So, we have the possibly surprising result, that of the 
people with 14 on DYS393 in our sample of 1000, the 
largest number would actually be in R1b, not in G, in 
spite of the fact that DYS393=14 is an unusual value in 
Haplogroup R1b.  In our sample of 1000, we would 
have a total of 50 from all haplogroups with 
DYS393=14, so we would have the following results, 
using the notation of our earlier development: 
 
 Pr(G | DYS393=14) = 14/50 = 28% 
 
 Pr(J | DYS393=14) = 1/50 = 2%  
 
 Pr(I1a | DYS393=14) = 13/50 = 26% 
 
 Pr(R1b | DYS393=14) = 22/50 = 44%  
 
 

However, we are not restricted to just one marker to 
make our predictions, and it is the availability of 
multiple markers that makes haplogroup prediction 
possible from Y-STR markers. 
 
Before we go on to consider more markers, let’s check 
to see that the formulas that we developed give the same 
probabilities that we obtained above for just the one 
marker.  
 
The formula for the probability of Haplogroup G would 
be: 
 
Pr(G | DYS393=14) = P(14 | G)Pr(G) / D 
 
where 
D =  P(14 | G)Pr(G) + P(14 | J)Pr(J) + 

 + P(14 | I1a)Pr(I1a) + P(14 | R1b)Pr(R1b) 
 
Similarly, 
 
Pr(J | DYS393=14) = P(14 | J)Pr(J) / D 
 
Pr(I1a | DYS393=14) = P(14 | I1a)Pr(I1a) / D 
 
Pr(R1b | DYS393=14) = P(14 | R1b)Pr(R1b) / D 
 
 
From the tables, we see that: 
 
 P(14 | G)Pr(G) = (.68)(.02) = .0136 
 
  P(14 | J)Pr(J) = (.015)(.04) = .00060 
 
 P(14 | I1a)Pr(I1a) = (.088)(.15) = .01320 
 
 P(14 | R1b)Pr(R1b) = (.028)(.79) = .02212 
 
and the denominator, D, is just the total of those four 
quantities: 
 
 D = .01360 + .00060 + .01320 + .02212 
 
     = .04952 
 
Substituting, we get  
             
Pr(G | DYS393=14) = .0136/.04952 = .275 
 
Pr(J | DYS393=14) = .0006/.05928 = .012 
 
Pr(I1a | DYS393=14) = .01320/.04952 = .267 
 
Pr(R1b | DYS393=14) = .02212/.04952 = .447 
 
We see that these are the same probabilities that we 
calculated manually by considering the 1000 people. 
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Now we can calculate the probability of being in each 
haplogroup, given that both DYS393=14 and 
DYS390=22 have been found as a result of testing.  
Again, these are the modal values of Haplogroup G, but 
let’s calculate the probabilities using Equation 4: 
 
Pr(G | DYS393=14 AND DYS390=22) =  
 
       Pr(DYS393=14|G)Pr(DYS390=22|G)Pr(G) 
   = ______________________________________  
       ∑ [ Pr(T1| Si) Pr(T2| Si) Pr(Sj) ] 
        j 
 
     =   (.68)(.603)(.02) / D 
             
where 
 
D = (.68)(.603)(.02) + (.015)(.126)(.04) + 
           + (.088)(.610)(.15) + (.028)(.010)(.79) 
 
    = .00820 + .00007 + .00805 + .00022 = .01654 
 
So, 
 
Pr(G | DYS393=14 AND DYS390=22) = 
 
                = .00820/.01654 = 0.496 
 
Similarly, 
 
Pr(J | DYS393=14 AND DYS390=22) = 0.004 
 
Pr(I1a | DYS393=14 AND DYS390=22) = 0.487 
 
Pr(R1b | DYS393=14 AND DYS390=22) = 0.013 
 
Bringing the second marker value into consideration 
dramatically reduces the probability of R1b, while 
boosting it for G and I1a.  Adding more markers would 
further refine the probabilities and provide 
discrimination between I1a and G. 
 
With the earlier approach to haplogroup prediction, 
which calculated a ‘goodness of fit” score for the 
haplotype for each haplogroup (Athey, 2005), adding 
more markers did not always result a higher score for 
the highest scoring haplogroup.  After a couple of dozen 
markers, the “fitness” score typically remained about 
the same because the fitness is averaged over all markers.  
However, with the Bayesian approach, more markers 
will usually improve the probability (but only if the 
added markers actually provide discriminative power). 
Typically, only 10-20 markers are sufficient to bring the 
probability for one of the haplogroups up to a value in 
excess of 99%.  In contrast, the fitness score sometimes 
was almost the same for the two highest-scoring 
haplogroups, for example, in cases where R1b and Q 
both show moderate scores. 

Independence of Y-STR Markers? 
 
In the development above, the assumption was made 
that the test results for Y-STR markers were 
independent.  This does not mean that particular values 
should not be characteristic of particular haplogroups—
the whole approach depends on that fact.  The 
independence assumption means that there is no 
correlation of marker values within one of the 
haplogroups included in the analysis.  The independence 
assumption greatly simplifies the development and the 
calculation of probabilities—indeed, it makes the whole 
approach feasible.  However, the fact is that the markers 
are not always independent within haplogroups.  There 
are a number of cases where there are “varieties” of 
haplotypes within a haplogroup, and these varieties are 
usually characterized by some correlation of values at 
two or more markers.  Founder effects and population 
dynamics cause, for example, DYS390 and DYS462 to 
be highly correlated within Haplogroup I1a.  When this 
happens, the assumption that  
 
Pr(DYS390=22 AND DYS462=12) | I1a) =  
 
       Pr(DYS390=22 | I1a)Pr(DYS462=12 | I1a) 
 
is no longer true.  Using the available data on allele 
frequencies, the left side of the expression above is 
about 0.71, while the right side is equal to about 0.43, a 
difference of almost a factor of two.  The difference is 
even more pronounced for the low probability 
combinations of values. 
 
Does this non-independence of marker values cause the 
overall approach to fail?  The answer is, sometimes yes 
and usually no.  The answer is yes if a small number of 
markers is being analyzed, if two of the markers are 
very correlated, and if it is important to obtain an 
accurate value for the probability (i.e., rather than 
simply, a result, for example, “greater than 95%”). 
 
The answer is no if we have test results for a large 
number of markers, because after 15-20 markers have 
been added to the analysis, the probability for one 
haplogroup will usually be over 99% regardless of any 
correlated markers or unusual values.  If we get a result 
of 99%, we usually don’t care if it is 99.0% or 99.99%.  
So, one practical solution to the problem of non-
independence of markers is to add markers to the 
analysis until the probability for some haplogroup has 
been “driven” well past 99%. 
 
There is another approach to the non-independence 
problem.  If each variety or subhaplogroup that has 
non-independent markers is treated as a separate 
haplogroup in the analysis, then the independence 
assumption again is a good one.  If adequate data on 
each variety is available, then this is a reasonable 



38   Journal of Genetic Genealogy, 2:34-39, 2006 
 

 

approach.  However, for some haplogroups and 
subclades, it is difficult to obtain the necessary data.  A 
subclade version of the program is planned for the 
future. 
 
Other Practical Problems 
 
Any allele-frequency approach depends upon having 
available the allele-frequency distributions for each 
marker in each haplogroup.  For the major haplogroups, 
there is an abundance of data.  For the minor and non-
European haplogroups, the data available is scarcely 
sufficient for the haplogroup to be included, especially 
for the markers that are not often measured. 
 
RESULTS 
 
Results From Testing R1b Haplotypes 
 
The Bayesian algorithm, with 15 haplogroups and their 
associated allele frequency distributions considered, was 
applied to 100 haplotypes of 37 markers each from Y-
Search where the haplogroup had been indicated as R1b.  
This is the same R1b dataset that was used in Athey 
(2005), less the one haplotype that was determined to be 
not in R1b in that study. 
 
The scores from the haplogroup fitness algorithm for 
this R1b set of haplotypes ranged from 40 to 85 in the 
previous study (Athey, 2005).  The mean of the scores 
was found to be about 65.   
 
Applying the Bayesian algorithm to the same 100 R1b 
haplotypes, using northwest European priors 
(haplogroup frequencies in the northwest European 
population), resulted in probabilities of R1b that were 
all greater than 99%.  
 
Results from Testing Fifty I1a Haplotypes 
 
In Athey (2005), 50 haplotypes with 37 Y-STR marker 
values were identified on Y-Search that had a DYS455 
repeat value of 7, 8, or 9 (generally considered to 
indicate membership in Haplogroup I1a), all with 
different surnames.  One haplotype had a value of 9 for 
DYS455 and the other 49 had the value of 8.   
 
The I1a fitness scores for the 50 haplotypes were 
reported in Athey (2005) to range from 31 to 89, with 
an average score of about 65.  Only four of the 
haplotypes had scores less than 50, each of which, 
indeed, had somewhat unusual haplotypes. 
 
When the Bayesian algorithm was applied to these same 
50 haplotypes, using northwest European priors, the 
probability for Haplogroup I1a was greater than 99% 
in every case, even the four somewhat unusual 
haplotypes.   

Application to the Haplotypes of the YCC Set of Y-
Chromosome Samples 
 
The Y-Chromosome Consortium has collected several 
dozen blood samples from populations around the 
world and has performed SNP and Y-STR tests on them.  
The haplotypes for 25 markers for the samples have 
been reported by Butler (2002).  The Bayesian algorithm 
was applied to the haplotypes that were from any of the 
15 haplogroups included in the program.   In the 
analysis for each YCC sample, the priors for all 15 
haplogroups were chosen on the basis of the origin of 
the samples:  Asia and Americas priors for Haplogroups 
C, H, N, O, and Q; western Europe priors for 
Haplogroups G, I, J, R1b; eastern Europe priors for N, 
R1a; and African priors for Haplogroups E3a, E3b 
(since these samples originated from Africa).  Note that 
there is no sample in the YCC collection for 
Haplogroup L. 
 
Table 4 shows the results for the YCC set of haplotypes.  
In every case except one, the highest probability 
returned by the program was for the correct haplogroup.  
In 50 out of the 54 cases, the correct haplogroup was 
predicted with a probability of over 99%.  Note, 
however, that YCC61 and YCC74 were labeled by the 
YCC as I1.  The program returned results of I1b2 and 
I1b1 for those, which are correct as “I1,” but it is not 
known if the subgroup is correct.  Two cases where the 
program did not perform well are discussed below. 
 
The YCC79 sample (Haplogroup G1) showed a 
probability of just 48% for Haplogroup G and a 52% 
probability for Haplogroup I1a.  This is probably 
because the allele frequencies for Haplogroup G were 
calculated from a dataset that included very few G1 
haplotypes. 
 
The YCC03 haplotype is in Haplogroup Q.  The 
Bayesian prediction algorithm gave the highest 
probability to this haplogroup, but that probability was 
just 61%.  The second highest probability was for 
Haplogroup C with 39%.  Note that Haplogroup C is a 
large and old haplogroup in Asia and it exhibits 
considerable diversity in its Y-STR values.   This 
occasionally causes difficulty in distinguishing 
Haplogroup C from others.  Haplogroup C should have 
been split into several of its subgroups and each 
included in the analysis, but there was scarcely enough 
data available for C to be included at all. 
 
Limitations 
 
The chief limitation of any allele-frequency approach to 
haplogroup prediction is the availability of an adequate 
database of Y-STR haplotypes from which the allele 
frequencies can be calculated.  For the common 
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haplogroups such as R1b and I1a, there are abundant 
data.  Even for haplogroups that occur at frequencies of 
just 1-4% in Europe, such as E3a, E3b, G and J, there 
are adequate data. 
 
For several of the haplogroups, there is substructure that 
must unfortunately be ignored.  Ignoring substructure 
often leads to the non-independence of marker values as 
discussed above, or to overly broad allele frequency 
distributions.  The ideal solution is to include these 
subgroups as separate haplogroups in the analysis, but  
adequate data are often unavailable.  For haplogroups 
such as Haplogroups C, H, L, N, and Q, there is 
scarcely enough data for those haplogroups to be 
included whole.  Because so few haplotypes for these 
haplogroups are publicly available, it is likely that those 
that are available may not be representative. 
 
With increasing numbers of people around the world 
being tested, many of these limitations may soon be 
resolved. 
 
Conclusion 
 
The allele-frequency approach to haplogroup prediction 
provides a powerful and robust alternative to genetic-
distance approaches, whether through a “goodness-of-
fit” method or a Bayesian probability approach.  
However, both allele-frequency approaches depend on 
having sufficient data from the haplogroups under 
consideration to enable the calculation of realistic allele-
frequency values for each haplogroup. 
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Table 4  Results for the YCC Samples 
YCC 
No. 

Haplo-
group 
Design- 
ated by 
YCC 

Calculated 
Probability of 

that 
Haplogroup 

Using 
Bayesian 

Approach (%) 

Next Highest 
Probability 

(%), (if Pr ≥� 
0.1%) and 
the  Next 
Highest 

Haplogroup 
YCC23 C3b 99.9 (C)  
YCC33 E3a 99.9 (E3a)  
YCC36 E3a 99.9 (E3a)  
YCC40 E3a 99.9 (E3a)  
YCC43 E3a 99.9 (E3a)  
YCC45 E3a 99.9 (E3a)  
YCC65 E3a 99.9 (E3a)  
YCC31 E3a1 99.9 (E3a)  
YCC44 E3a1 99.9 (E3a)  
YCC32 E3b 99.9 (E3b)  
YCC79 G1 48.4 (G) 51.4 (I1a) 
YCC52 G2 99.9 (G)  
YCC53 G2 99.9 (G)  
YCC55 G2 99.9 (G)  
YCC80 G2a 99.9 (G)  
YCC24 G2a1 99.8 (G) 0.1 (E3a) 
YCC58 H1 99.8 (H) 0.1 (J) 
YCC61 I1 99.9 (I1b2)  
YCC74 I1 99.9 (I1b1)  
YCC63 I1a1 99.9 (I1a)  
YCC72 I1b1 99.9 (I1b1)  
YCC59 J 99.9 (J)  
YCC56 J2 95.3 (J) 4.7 (H) 
YCC60 J2 99.9 (J)  
YCC77 N1 98.4 (N) 1.6 (C) 
YCC47 N3a 99.9 (N)  
YCC48 N3a 99.9 (N)  
YCC51 N3a 99.9 (N)  
YCC49 N3a1 99.9 (N)  
YCC50 N3a1 99.9 (N)  
YCC66 O1 99.7 (O) 0.3 (C) 
YCC67 O1 99.9 (O)  
YCC69 O2a 93.6 (O) 6.4 (C) 
YCC68 O3c 99.9 (O)  
YCC57 O3e 99.9 (O)  
YCC78 O3e 99.9 (O)  
YCC02 Q 99.9 (Q)  
YCC03 Q 61.4 (Q) 38.6 (C) 
YCC04 Q 99.9 (Q) 0.3 
YCC25 Q 99.9 (Q)  
YCC12 Q3 99.9 (Q)  
YCC13 Q3 99.7 (Q) 0.2(C) 
YCC15 Q3 99.7 (Q) 0.3 (C) 
YCC16 Q3 99.7 (Q) 0.3 (C) 
YCC17 Q3 99.9 (Q)  
YCC18 Q3 99.9 (Q) 0.1 (R1b) 
YCC14 Q3c 99.9 (Q)  
YCC70 R1a 99.9 (R1a)  
YCC81 R1a 99.9 (R1a)  
YCC26 R1b 99.9 (R1b)  
YCC27 R1b 99.9 (R1b)  
YCC62 R1b 99.9 (R1b)  
YCC64 R1b 99.9 (R1b)  
YCC71 R1b 99.9 (R1b) 0.1 (Q) 
 


